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Coşku Kasnakoğlu and Andrea Serrani

Abstract— In this paper, nonlinear control systems whose
dynamics are quadratic with respect to state, and bilinear with
respect to state and input, which exhibit an oscillation caused
by a stable limit cycle for zero input are studied. The effect of
linear control on this model is analyzed using modal forms
and center manifold theory. It is found that the oscillation
amplitude depends both on terms linear in the control and
those that depend on the center manifold. To exploit the latter,
a nonlinear control law is proposed. The closed loop system is
simplified using a time varying periodic change of coordinates,
time scaling, and averaging. Using center manifold theory,
conditions governing the number and stability type of the limit
cycles, and analytical expressions for the oscillation amplitude
are derived. The results are verified using a finite dimensional
cavity flow model as an example.

Index Terms— Galerkin projection, proper orthogonal de-
composition, center manifold theory, averaging theory, reduced
order modeling, cavity flow control, Navier-Stokes equation

I. INTRODUCTION

Systems in many areas and applications are described by

dynamics which are quadratic with respect to the state and

bilinear with respect to the input and the state. A system

model of this type is the Galerkin model, which has been

utilized extensively in the field of flow control, e.g. [9], [13],

[3]. The work presented here deals with the simplification,

analysis and control of a system described by a Galerkin

model, by means of center manifold theory [14], which is

an important tool in nonlinear system theory. Work using

center manifold theory includes [1], [7], [2].

The goal of this paper is to start with a Galerkin model,

which is a representative of a class of systems that frequently

arise in flow control problems, and apply center manifold

theory, together with averaging, for the analysis, simplifi-

cation and control of this model. The paper is organized as

follows: The description of the problem is given in Section II.

Classical linear control approach to the problem is analyzed

in Section III, followed by model reduction, nonlinear control

design and analysis in Section IV. The results are applied to

a cavity flow control problem in Section V and numerical

simulation results are presented in Section VI. Conclusions

and future work are given in Section VII.
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II. PROBLEM DESCRIPTION

Consider the following N -dimensional nonlinear control

system

ȧi =
N

∑

j=1

lijaj +
N

∑

j,k=1

qijkajak +



ri +
N

∑

j=0

sijaj



 u (1)

with i = 1 . . . N . System (1) can be expressed in compact

form as

ȧ = La + Q(a) + (R + Sa) u

where a = {ai}
N
i=1 ∈ R

N , u ∈ R, L = {lij}
N
i,j=1 ∈ R

N×N ,

Q(a) = {aT Qia}
N
i=1 ∈ R

N , Qi = {qijk}
N
j,k=1 ∈ R

N×N ,

R = {ri}
N
i=1 ∈ R

N and S = {sij}
N
i,j=1 ∈ R

N×N .

Assumption 1. System (1), when u = 0, has a stable limit

cycle. Furthermore, it exhibits a locally oscillatory behavior

described by the eigenvalue spectrum of L as spec(L) =
{σ + jω, σ − jω,−λ1, · · · ,−λN} where σ > 0, ω > 0,

λi > 0 and λi 6= λj for i 6= j. This structure will always be

preserved, even in closed loop.

Using a non-singular transformation, system (1) can be

represented in modal coordinates as

η̇ = F1η + ϕ1(η, ζ) + (G1 + γ1(η, ζ))u

ζ = F2η + ϕ2(η, ζ) + (G2 + γ2(η, ζ))u (2)

where

η =

[

η1

η2

]

, ζ =











ζ1

ζ2

...

ζN−2











, F1 =

[

σ −ω
ω σ

]

and F2 = diag(−λ1, · · · ,−λN ). Also G1 ∈ R
2, G2 ∈

R
N−2, and ϕ1, γ1 : R

2 × R
N−2 → R

2 and ϕ2, γ2 : R
2 ×

R
N−2 → R

N−2 are continuously differentiable functions

which vanish at the origin together with their first derivatives.

Model (2) represents a class of systems obtained when one

considers a reduced order model for flow control problems

(e.g. [9], [11], [12], [10]).

III. ANALYSIS FOR LINEAR PART OF CONTROL

For the sake of simplicity, without loss of generality, the

analysis will be restricted to the case N = 4; it should be

clear how to extend the results in case there are additional

stable modes. Consider a control law of the form

u = Kη + K̄(η)
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where K̄(η) = O(η2
1 + η2

2) = O(ρ2), being ρ =
√

η2
1 + η2

2

and θ = arctan(η2/η1) the polar coordinate representation

of η. The closed loop system under the given control law is

given by

η̇ = (F1 + G1K)η + ϕ(η, ζ) + γ1(η, ζ)Kη

+(G1 + γ1(η, ζ))K̄(η)

ζ̇ = F2ζ + G2Kη + ϕ(η, ζ) + γ2(η, ζ)Kη

+(G2 + γ2(η, ζ))K̄(η) (3)

where

F1 + G1K =

[

σ + g1,1K1 −ω + g1,1K2

ω + g1,2K1 σ + g1,2K2

]

,

G1 =

[

g11

g12

]

, G2 =

[

g21

g22

]

and K = [K1 K2]. Transforming the above system into

modal form yields

η̇ = F̄1(K)η + Φ̄1(η, ζ,K)

ζ̇ = F2ζ + Φ̄2(η, ζ,K) (4)

where

F̄1(K) =

[

σ̄(K) −ω̄(K)
ω̄(K) σ̄(K)

]

and Φ̄1, Φ̄2 : R
2×R

2×R → R
2 collect the nonlinear terms.

In addition

σ̄(K) = σ + 1/2 g1,2K2 + 1/2 g1,1K1

ω̄(K) =
1

2
(−g2

1,2K2
2 − 2 g1,2K2g1,1K1 − g2

1,1K1
2

+4ω2 − 4ω g1,1K2 + 4 g1,2K1ω)1/2 .

Regarding σ̄ as a state obeying a trivial dynamics, it is

possible to apply center manifold theory to analyze the local

behavior of the trajectories of the system in (4). Converting

the system to polar coordinates ρ̇ = σ̄ρ + O(ρ2), one can

approximate the center manifold as an expansion of the form

ζ = h(ρ, σ̄) = α1(K)ρ2 + α2(K)σ̄2 + α3(K)ρσ̄ + O(3).
Substituting this into the homology equation

∂h

∂ρ
(ρ, σ̄)

(

σ̄ρ + O(ρ2)
)

= F2h(ρ, σ̄) + Φ̄2(ρ, θ, h(ρ, σ̄),K)

and solving for αi yields α2 = α3 = 0. Thus an approxi-

mation of the least nontrivial order for the center manifold

is of the form ζ = h(ρ) = α1(K)ρ2 + h.o.t.; making

this substitution and transforming into polar coordinates one

obtains the reduced dynamics

ρ̇ = (σ̄(K) − ᾱ(K)ρ2)ρ + h.o.t.

θ̇ = ω + β̄(K)ρ2 + h.o.t. (5)

where ᾱ(K) and β̄(K) are parameters depending on the

center manifold and h.o.t. stands for ‘higher order terms’.

The fact that σ̄(0) > 0 and ᾱ(0) > 0 follow from the

Assumption 1. From (5) one sees that, if σ̄(K) < 0 and

ᾱ(K) > 0, then ρ = 0 is asymptotically stable. If σ̄(K) < 0
and ᾱ(K) < 0 then ρ = 0 is unstable and the system also has

an unstable limit cycle. If σ̄(K) > 0 and ᾱ(K) < 0 then

ρ = 0 is unstable and the system has no limit cycle. The

interesting case is when we have σ̄(K) > 0 and ᾱ(K) > 0;

for this case ρ = 0 is unstable and the system has a stable

oscillation, with amplitude and frequency

ρ∗ =

√

σ̄(K)

ᾱ(K)
, ω∗ = ω + β(K)

σ̄(K)

ᾱ(K)
(6)

Recall that σ̄(K) = σ +1/2 g2,2K2 +1/2 g1,1K1 and ᾱ(K)
depends on the center manifold. One sees from (6) that

there are two ways of decreasing ρ∗ by feedback: the first

is to decrease σ̄(K) by means of K, and the second is to

increase ᾱ(K). For the former way, some examples of flow

control are [8], [11], [15], [4]. The goal of this paper is to

explore the latter way, and provide an analysis on the effect

of the nonlinear part of the control. Towards this goal, first

averaging theory [6] will be used to simplify the system and

obtain more structure to exploit in the analysis.

IV. MODEL REDUCTION AND ANALYSIS FOR

THE NONLINEAR PART

For the system in (2), consider a parametrized family of

control laws of the form u(η,K), where u is smooth, with

u(0,K) = 0 and ∂u
∂η

∣

∣

∣

η=0
= 0. The closed loop system is

written as

η̇ = F1η + ϕ1(η, ζ)

+(G1 + γ1(η, ζ))u(K, η) =: fη(η, ζ)

ζ = F2ζ + ϕ2(η, ζ)

+(G2 + γ2(η, ζ))u(K, η) =: fζ(η, ζ) (7)

Define a time-varying periodic change of coordinates ηϑ =
R(ϑ)η where

R(ϑ) =

[

cos ϑ sin ϑ
− sin ϑ cos ϑ

]

, ϑ = ωct

and ωc is the frequency of oscillation of the limit cycle, as

given by ω∗ in (6). Notice that in the above ϑ can be inter-

preted as a new time scale. Using the above transformation

one gets

η̇ϑ = R(ϑ)fη(RT (ϑ)ηϑ, ζ) + Ṙ(ϑ)RT (ϑ)ηϑ =: fϑ
η (ϑ, ηϑ, ζ)

ζ̇ = fζ(R
T (ϑ)ηϑ, ζ) =: fϑ

ζ (ϑ, ηϑ, ζ) . (8)

Note that one can also view this change of coordinates

as approximating the solution with its first harmonic, with

time-varying coefficients, and then looking at the dynamics

of these coefficients. This is indeed closely related to the

Krylov-Bogoliubov averaging (see [5] for details). Let ǫ =
ω−1

c and write

dηϑ

dϑ
= ǫfϑ

η (ϑ, ηϑ, ζϑ)

dζϑ

dϑ
= ǫfϑ

ζ (ϑ, ηϑ, ζϑ) (9)

Note that fϑ
η and fϑ

ζ are bounded with respect to ϑ and ǫ
since these only appear in sin and cos functions. Viewing ϑ
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as the new time variable one can average over ϑ ∈ [0, 2π]
with states (η̄ϑ, ζ̄) as

dη̄ϑ

dϑ
=

ǫ

2π

∫ 2π

0

fϑ
η (ϑ, η̄ϑ, ζ̄) dϑ =: ǫ fϑ

η,avg(η̄
ϑ, ζ̄)

dζ̄

dϑ
=

ǫ

2π

∫ 2π

0

fϑ
ζ (ϑ, η̄ϑ, ζ̄) dϑ =: ǫ fϑ

ζ,avg(η̄
ϑ, ζ̄)

which, switching back to the original coordinates and time

scale, and dropping bars for ease of notation, yields an

averaged system for (η, ζ) the form

η̇ = fη,avg(η, ζ)

ζ̇ = fζ,avg(η, ζ) . (10)

Remember that fη,avg and fη,avg above depend on the input

u(η,K) implicitly.

As mentioned in the previous section, the goal is to single

out the effect of the linear part of the control, i.e. in the

dynamics for η above it is desirable for the input to enter

only nonlinearly. It can be shown that any phase invariant

control, i.e. one of the form u = u(ρ,K) will achieve this

effect, resulting in an averaged dynamics of the form:

[

η̇

ζ̇

]

=

[

F1 0
0 F2

] [

η
ζ

]

+

[

Φ1(η, ζ)
Φ2(η, ζ)

]

+

([

0
B2

]

+

[

g1(η)
g2(ζ)

])

u(ρ,K) (11)

where

Φ1(η, ζ) =

[

φ11η1ζ1 + φ12η1ζ2 + φ21η2ζ1 + φ22η2ζ2

−φ21η1ζ1 − φ22η1ζ2 + φ11η2ζ1 + φ12η2ζ2

]

Φ2(η, ζ) =

[

φ31(η
2
1 + η2

2) + φ32ζ
2
1 + φ33ζ

2
2 + φ34ζ1ζ2

φ41(η
2
1 + η2

2) + φ42ζ
2
1 + φ43ζ

2
2 + φ44ζ1ζ2

]

B2 =

[

b21

b22

]

, g1(η) =

[

g11η1 + g12η2

−g12η1 + g11η2

]

,

g2(ζ) =

[

g31ζ1 + g32ζ2

g41ζ2 + g42ζ2

]

The open forms of the parameters above can be found in [5].

The input shall be fixed to be u = Kρ2 from this point on1.

If one represents the above in polar coordinates, i.e. ρ =
√

η2
1 + η2

2 and θ = arctan(η2/η1) one gets

ρ̇ =
(

σ + φ1,1ζ1 + φ1,2ζ2 + g1,1Kρ2
)

ρ

θ̇ = ω − φ2,1ζ1 − φ2,2ζ2 − g1,2Kρ2

ζ̇1 = −λ1ζ1 + φ3,4ζ1ζ2 + φ3,2ζ1
2 + φ3,3ζ2

2 + φ3,1ρ
2

+(b2,1 + g3,1ζ1 + g3,2ζ2) Kρ2

ζ̇2 = −λ2ζ2 + φ4,4ζ1ζ2 + φ4,2ζ1
2 + φ4,3ζ2

2 + φ4,1ρ
2

+(b2,2 + g4,1ζ1 + g4,2ζ2) Kρ2 (12)

1A few comments on this input selection: First of all, note that it would
not have been possible to use u = Kρ instead, since this is not smooth at
η = 0. Second, it is also possible to obtain the above form using a phase
dependent control, i.e. one that includes θ: It is possible to show that, for
a control of the form u = π

2
Kρ2 sin( 1

2
θ), the equations for the averaged

system will be identical to those in (11).

From (12), treating σ as a state with trivial dynamics, one

can write
[

σ̇
ρ̇

]

=

[

0 0
0 0

] [

σ
ρ

]

+

[

ϕ11(σ, ρ, ζ)
ϕ12(σ, ρ, ζ)

]

[

ζ̇1

ζ̇2

]

=

[

−λ1 0
0 −λ2

] [

ζ1

ζ2

]

+

[

ϕ21(σ, ρ, ζ)
ϕ22(σ, ρ, ζ)

]

(13)

where ϕ1 = [ϕ11 ϕ12]
T and ϕ2 = [ϕ21 ϕ22]

T encap-

sulate the nonlinear terms in (12). Clearly ϕ1(0, 0, 0) =
ϕ2(0, 0, 0) = 0. Hence for system (13) there exists a center

manifold, ζ = ζ̄(σ, ρ), where ζ̄ = [ζ̄1 ζ̄2]
T , satisfying

∂ζ̄i

∂ρ
ϕ12(σ, ρ, ζ̄(σ, ρ)) = −λiζ̄i(σ, ρ) + ϕ2i(σ, ρ, ζ̄i(σ, ρ)) (14)

for i = 1, 2, to which the dynamics of the system (13) will

be locally attracted [14].

The differential equations in (14) are too complicated to

be solved directly, so one needs to look for an approximation

of the form

ζ̄i(ρ, σ) = ci,0(σ) + ci,1(σ)ρ + ci,2(σ)ρ2 + ci,3(σ)ρ3

+ci,4(σ)ρ4 + O(ρ5) (15)

subject to conditions ci,0(0) = 0, ci,1(0) = 0, so as to satisfy

the center manifold requirements ζ̄i(0, 0) = 0, Dζ̄i(0, 0) =
0, for i = 1, 2. Substituting (15) into (14) and solving for

the coefficients gives:

c1,0 = 0 , c2,0 = 0, c1,1 = 0 , c2,1 = 0

c1,2 =
2σ Kb2,1 + 2σ φ3,1 + λ2Kb2,1 + λ2φ3,1

4σ2 + 2σ λ2 + 2λ1σ + λ1λ2

c2,2 =
2σ Kb2,2 + 2σ φ4,1 + λ1Kb2,2 + λ1φ4,1

4σ2 + 2σ λ2 + 2λ1σ + λ1λ2

c1,3 = 0 , c2,3 = 0

c1,4 = [λ2c2,2g3,2K + λ2c1,2g3,1K + λ2c2,2c1,2φ3,4

−2λ2c1,2φ1,2c2,2 − 2λ2c1,2g1,1K

+4σ c2,2c1,2φ3,4 + 4σ c2,2g3,2K + 4σ c1,2g3,1K

−8σ c1,2φ1,2c2,2 − 8σ c1,2g1,1K − 8σ φ1,1c1,2
2

+4σ c1,2
2φ3,2 + 4σ c2,2

2φ3,3 − 2λ2φ1,1c1,2
2

+λ2c1,2
2φ3,2 + λ2c2,2

2φ3,3]

/ [4σ λ2 + 4λ1σ + λ1λ2 + 16σ2]

c2,4 = [λ1c2,2c1,2φ4,4 − 2λ1c2,2g1,1K − 2λ1c2,2φ1,1c1,2

+4σ c1,2g4,1K + 4σ c2,2g4,2K + 4σ c2,2c1,2φ4,4

−8σ c2,2g1,1K − 8σ c2,2φ1,1c1,2 + λ1c1,2g4,1K

+λ1c2,2g4,2K + 4σ c2,2
2φ4,3 + 4σ c1,2

2φ4,2

+λ1c2,2
2φ4,3 + λ1c1,2

2φ4,2 − 8σ φ1,2c2,2
2

−2λ1φ1,2c2,2
2]

/ [4σ λ2 + 4λ1σ + λ1λ2 + 16σ2] .

If one fully expands, simplifies and collects terms, a
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structure of following form is obtained

c1,2 = µ1,2,1 + µ1,2,2K

c2,2 = µ2,2,1 + µ2,2,2K

c1,4 = µ1,4,1 + µ1,4,2K + µ1,4,3K
2

c2,4 = µ2,4,1 + µ2,4,2K + µ2,4,3K
2 . (16)

Substituting equations (16) into (15) and then substituting

this into (12) and collecting terms gives

ρ̇ = (σ + d1ρ
2 + d2ρ

4)ρ (17)

where

d1 = φ1,2 (µ2,2,1 + µ2,2,2K) + φ1,1 (µ1,2,1 + µ1,2,2K)

d2 = φ1,1

(

µ1,4,1 + Kµ1,4,2 + K2µ1,4,3

)

+φ1,2

(

µ2,4,1 + Kµ2,4,2 + K2µ2,4,3

)

(18)

In (17) the positive roots {ρ1, ρ2} of the polynomial σ +
d1ρ

2 + d2ρ
4 are

{ρ1, ρ2} =

√

−d1 ±
√

d2
1 − 4d2σ

2d2
(19)

The roots of (19) will now be analyzed based on the signs of

d1 and d2: First recall that σ > 0. Next note that it is required

to have d2
1−4σd2 > 0 to have any real roots. Assuming this

is the case from now on:

If it is the case that d2 > 0, in order to have real roots

for (19) then it is required that −d1 ±
√

d2
1 − 4σd2 > 0.

If d1 > 0, then −d1 −
√

d2
1 − 4σd2 > 0 is impossible and

to have −d1 +
√

d2
1 − 4σd2 > 0 it is required that d2 < 0

which is also not true for this particular case; hence d2 <
0, d1 > 0 case gives no real solutions. If d1 < 0, then −d1+
√

d2
1 − 4σd2 > 0 is clearly true, and −d1 −

√

d2
1 − 4σd2 >

0 is also true since d2 > 0 for this case. Hence for the

d2 < 0, d1 < 0 case there are two real solutions.

If it is the case that d2 < 0, in order to have real roots

for (19) it is required that −d1 ±
√

d2
1 − 4σd2 < 0. If d1 >

0, then −d1 +
√

d2
1 − 4σd2 < 0 cannot hold as d2 > 0.

However −d1 −
√

d2
1 − 4σd2 < 0 is true so for this case

there is a single real solution. for the d2 < 0, d1 > 0 case.

If d1 < 0, then −d1 +
√

d2
1 − 4σd2 < 0 is false but −d1 −

√

d2
1 − 4σd2 < 0 is true for this case, so there is also one

real solution for the d2 < 0, d1 < 0. Combining the two

cases the conclusion is that there exists a single solution for

d2 < 0.

V. EXAMPLE

The Galerkin model is widely used in flow control as a

reduced order model describing the dynamics of the flow.

An interesting case is the control of the air flow over a

cavity using an synthetic-like jet actuator, which is typically

an acoustic actuator (see Figure 1).

In deriving a reduced order model for the cavity flow

process, one starts with the incompressible Navier-Stokes

equation that describes the dynamics of the cavity flow

∂tu + ∇ · (u u) = −∇p +
1

Re
∆u (20)

Fig. 1. Control of air flow over a cavity using an acoustic actuator.

subject to the some boundary conditions in which the system

input is embedded. Here u(x, t) is the velocity field, p is the

pressure and Re is the Reynolds number. One then obtains

a set of POD modes for the system; let these modes be

modes {ui(x)}N
i=0. These POD modes are orthonormal i.e.

(ui, uj)Ω = δij where Ω is the spatial flow domain, and the

inner product is defined as (u, v) :=
∫

Ω
u · v dV .

Projecting the velocity vector u onto these modes one

obtains the POD expansion as:

u(x, t) ≈ u[N ] = u0(x) +

N
∑

i=1

ai(t)ui(x) (21)

where the coefficients ai(t) capture time dependence.

The next step is the Galerkin Projection (GP) where (21)

is substituted into (20) to obtain the dynamics in terms of

the time coefficients {ai(t)}
N
i=0, followed by a shift by the

equilibrium point as, i.e. ã = a − as, to obtain

˙̃ai =
1

Re

N
∑

j=1

l̃ij ãj +

N
∑

j,k=1

q̃ijkãj ãk +



r̃i +

N
∑

j=0

s̃ij ãj



 u

where lij , qijk, ri and sij are the Galerkin system coeffi-

cients. Comparing this to (1) one sees that the system is

now of the form that was analyzed in this paper. Hence

for a control of the form u = Kρ2, the corresponding

reduced system is of the form (17). For numerical simulation,

parameter values from the cavity flow experimental setup

descried in [15] will be used. Using these values to compute

d1 and d2 from (18)

d1 = −5.0579 10−4K − 0.0876

d2 = −7.4279 10−8K2 − 1.0121 10−4 − 0.0149

and from the above equations, the discriminant can be

computed as

d2
1 − 4σd2 = 3.1053 10−7K2 + 1.6316 10−4K + 0.0187

Carrying out an analysis similar to that in the previous

section, one concludes that, there will be no positive real so-

lutions for K ∈ (−1194.3,−168.3783), one positive real so-

lution for K ∈ (−∞,−1194.3) ∪ (−168.2720,∞), and two

positive real solutions for K ∈ (−168.3783,−168.2720).
Figure 2 shows the change of the oscillation amplitude

ρ∗ versus the controller gain K, for control u = Kρ2,

in the range K ∈ [−1000, 1000]. The graph is computed

based on the center manifold analysis above. In this range
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Fig. 2. Steady state oscillation amplitude ρ∗ vs. controller gain K
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Fig. 3. The original and averaged Galerkin systems with no control.

for K, one can observe that the positive values of K
decrease ρ∗ whereas positive values increase it up until

around K ≈ −200 after which the system does not have

a stable oscillation.

VI. SIMULATION RESULTS

To illustrate the validity of the analysis done in the preced-

ing sections and to compare how well the averaged reduced

system approximates the original Galerkin system, a number

of MATLAB simulations were performed on the original

(finite-dimensional) Galerkin system as well as the averaged

Galerkin system. As mentioned in the previous section we

used the parameters from the cavity flow experimental setup

in [15].
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Fig. 4. The original and averaged Galerkin systems with control u = Kρ2

where K = 500.
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Fig. 5. The original and averaged Galerkin systems with control u = Kρ2

where K = −100.
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Fig. 6. The original and averaged Galerkin systems with control u = Kρ2

where K = −200.

Figure 3 shows the simulation results for the original and

averaged system in the open loop. The system eventually

sustains an oscillation of amplitude around 1, which is

consistent with what is predicted by the center manifold

analysis in figure 2.

Figures 4 shows the simulation results for the original and

averaged system for control u = Kρ2 with K = 500. One

observes that the system still has a stable oscillation but the

amplitude of oscillation is reduced to around 0.6-0.7, which

is also consistent with the center manifold analysis in figure

2.

Figures 5 shows the simulation results for the original and

averaged system for control u = Kρ2 with K = −100.

One observes that the oscillation amplitude now increased

to around 1.5. This sort of behavior was also predicted by

the center manifold analysis, as can bee seen in figure 2.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a nonlinear control system whose dynamics

is described by a Galerkin model was studied. An analysis on

the effect of linear control was performed using modal forms

and center manifold theory. To analyze the effect of nonlinear

control a simplification of the system model was performed

using a time varying periodic change of coordinates, a time

scaling, and averaging. It was shown that for certain types

of control, this procedure yields a much simpler system with

much more apparent structure than the original. The averaged

system was further simplified using center manifold theory,

after which it was possible to obtain conditions governing

the number and stability type of the limit cycles of the

closed loop system, and to derive analytical expressions for

the amplitude of oscillation. The results obtained in the

study were tested and verified using the cavity flow control

problem as an example, whose dynamics can be described

by a Galerkin model of the type considered here.

Future directions include: expanding the results to other

families of control laws, observer design for the Galerkin

model, and verifying the results on an actual cavity flow

experimental setup.
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