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Abstract— In this paper, we utilize wavelet transform to obtain 
dynamical models describing the behavior of fluid flow in a local 
spatial region of interest. First, snapshots of the flow are obtained 
from experiments or from computational fluid dynamics (CFD) 
simulations of the governing equations. A wavelet family and 
decomposition level is selected by assessing the reconstruction 
success under the resulting inverse transform. The flow is then 
expanded onto a set of basis vectors which are constructed from 
the wavelet function. The wavelet coefficients associated with the 
basis vectors capture the time variation of the flow within the 
spatial region covered by the support of basis vectors. A 
dynamical model is established for these coefficients by using 
subspace identification methods. The approach developed is 
applied to a sample flow configuration on a square domain where 
the input affects the system through the boundary conditions. It 
is observed that there is good agreement between CFD simulation 
results and the predictions of the dynamical model. A controller 
is designed based on the dynamical model and is seen to be 
successful in regulating the velocity of a given point within the 
region of interest. 

Keywords-flow control; regional dynamic modeling; wavelet 
transform;  

I.  INTRODUCTION 

The term fluid flow refers to the motion of liquids and gases, 
which is an important part of everyday life. The air flow over 
the wings of an airplane, crude oil flow in a pipeline or water 
flow around the body of a submarine are all examples fluid 
flow. Thus, from a scientific and technological point of view, 
modeling and understanding of fluid flow is an issue of high 
importance [1, 2]. One of the most common methods in 
dynamical modeling of fluid flow is the Proper Orthogonal 
Decomposition/Galerkin Projection (POD/GP) method. In this 
approach, one obtains a set of modes called POD modes, which 
capture a sufficiently large amount of energy of the flow. The 
flow is then expanded in terms of these modes and this 
expansion is substituted into the partial differential equations 
(PDEs) representing the flow, resulting in a set of ordinary 
differential equations (ODEs) in the time coefficients of the 
modes [3, 4, 5]. While this process does indeed result in finite 
dimensional dynamical models, it is still very difficult to 
perform analysis and design as these models as they are non-
linear in nature. Another issue is that the POD modes do not 
have a compact support but instead they are spread out to the 

entire flow domain. Hence the time coefficients associated with 
the modes do not provide direct information regarding changes 
in a local spatial domain of interest. In many cases one is 
interested in the dynamical behavior in a given local region 
only, so it is of interest to build models whose states can 
directly be associated with a spatial region. 

In this paper we utilize wavelet transform methods [6, 7, 8, 
9] to develop a dynamical local modeling approach for flow 
control, which addresses the aforementioned problems. The 
paper is organized as follows: Section II presents an overview 
of the wavelet transform and the Navier-Stokes equations. 
Next, the approach proposed in the paper is explained in 
Section III and it is illustrated with a flow control example in 
Section IV, where the task is to regulate the velocity of a given 
point inside a square. The paper ends with Section V, which 
provides conclusions and future work ideas. 

II. MOTIVATION AND BACKGROUND 

A.  Wavelet Transform and Reconstruction, Multilevel 
Decomposition and Thresholdolding 

 The wavelet transform is among the most common 
methods in signal processing on which a large numbers of 
sources and studies exist [6, 7, 8, 9]. The wavelet transform is 
the representation of a function by wavelets, where the 
wavelets are scaled and translated versions of a finite-length 
fast-decaying oscillating waveform called the wavelet function. 
Wavelet transforms are advantageous over traditional Fourier 
transforms for representing functions that have discontinuities 
and sharp peaks, and for accurately deconstructing and 
reconstructing finite, non-periodic and/or non-stationary 
signals. The wavelet transform can be expressed 
mathematically as the integration of scaled and shifted versions 
of a wavelet function over time, i.e. 

,ሺscaleܥ positionሻ ൌ න ݂ሺݐሻ߰ሺscale, position, ݐሻ݀ݐ

∞

ିஶ

 (1) 

where ܥ represents the Wavelet Transform coefficients and ߰ 
represents the wavelet function which depends on the wavelet 
family being used for the process. There are numerous families 
available for wavelet transform, including BNC, Coiflet-
Daubechies-Feauveau, Daubechies, Haar, Mathieu, Legendre, 
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Villasenor, and Symlet. The reconstruction of the function ݂ is 
obtained by the summation of the coefficients ܥ multiplied by 
the wavelet function ߰ that is scaled and shifted properly.  

In numerical analysis and functional analysis problems, a 
sampled version of the continuous wavelet transform described 
above is used more commonly, which is called the discrete 
wavelet transform (DWT). This is also the method that we 
employ in this paper. In DWT, the signal to be analyzed is 
filtered into high-pass and low-pass filters with certain cutoff 
frequencies, and the resulting signal is downsampled to obtain 
an equal number of data as the original signal. The inverse 
transform for rebuilding the signal from wavelet coefficients is 
also done in a similar but backwards fashion: After 
upsampling, one applies reconstruction low-pass and high-pass 
filters to approximation and detail coefficients respectively, and 
combines the two to obtain the reconstructed signal. 

The wavelet transform can also be applied to two-
dimensional signals, by applying filtering and downsampling 
first to the columns, and then to the rows. This results in four 
matrices containing the wavelet coefficients; one for the 
approximation coefficients, and three for the detail coefficients 
in horizontal, vertical and diagonal directions. This procedure 
can be repeated on the approximation coefficients to obtain a 
second level of approximation and detail coefficients, and then 
on the second level approximation coefficients to obtain a third 
level of coefficients, and so on. This process is termed the 
multilevel DWT and is illustrated in Figure 1. 

Also worth mentioning is the procedure of thresholding, 
which is a common post-transform operation to apply to the 
wavelet coefficients. The thresholding process can be described 
as follows 

ܻ ൌ ൜
ܺ, for |ܺ|   ܶ
0, for |ܺ|  ܶ

                                               (2) 

where X represents the detail coefficients, Y represents the 
thresholded detail coefficients and ܶ א Թା  is the threshold 
value. The expression shown above states that if the absolute 
value of a coefficient is greater than the threshold value, this 
coefficient is saved; otherwise it set to zero. It is quite common 
that one can pick a very small value for ܶ and still achieve an 
acceptable reconstruction from the thresholded coefficients. 
Since a small value for ܶ implies that most detail coefficients 
will be set to zero, one can store the thresholded coefficients in 
a sparse matrix to save space, which is the basic idea behind 
using wavelet transform for the compression of images and 
videos. 

B.  Navier-Stokes (NS) Equations  

The Navier-Stokes PDEs are the most commonly used 
equations to describe the behavior of fluid flow, and have the 
following form 

ݍ߲
ݐ߲

 ሺݍ · ݍሻ ൌ    (3) ݍΔߥ

where ߥ א Թ  is the viscosity,  ሺݔ, ,ݕ ሻݐ א Թ  is the pressure 
and ݍሺݔ, ,ݕ ሻݐ ൌ ሺݑሺݔ, ,ݕ ,ሻݐ ,ݔሺݒ ,ݕ ሻሻݐ א Թଶ  is the flow 
velocity with ݑ and ݒ being the components in the longitudinal 
and lateral directions [1]. The equations arise from applying 
Newton's second law to fluid motion, under the assumption that 
the fluid stress is the sum of a diffusing viscous term plus a 
pressure term. It is also common to assume that the flow is 
incompressible; meaning that equation (3) is subject to the 
divergence condition ߘ · ݍ ൌ 0.  

III. MODELING APPROACH 

The regional modeling process proposed in this paper 
consists of the following steps: 

The first step in the modeling process is to record 2D 
instantaneous images, i.e. snapshots, of the flow. The snapshots 
can either be obtained from actual physical experiments using 
techniques such as particle image velocimetry (PIV), or from 
computer data that results from CFD simulations of the Navier-
Stokes equations (3).  

The next step is the selection of a wavelet function to be 
used. The selection criterion is that the wavelet function must 
be able to represent the flow snapshots with adequate accuracy, 
in the sense that the reconstructed snapshots formed from the 
wavelet coefficients are close to the original snapshots.  

The third step is to determine the number of levels for the 
wavelet transform. Higher number of levels will result in the 
approximation coefficients getting decomposed further and will 
enable to flow snapshots to be represented with a fewer number 
of approximation coefficients. However if the number of 
approximation coefficients are too low, each coefficient will 
have to represent a larger spatial region, so the model 
resolution will decrease. Thus one must take these factors into 
account when determining a suitable level of decomposition. 

The next step is the construction of a set of basis vectors 
,ሺxߔ yሻ in terms of which the flow snapshots will be expressed 
as an expansion of the following form 

 
 

Figure 1. Multilevel 2D wavelet decomposition 

 
`
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,ݔሺݍ ,ݕ ሻݐ ൌ  ܽሺݐሻߔሺݔ, ሻݕ

ே

ୀଵ

 ሺ4ሻ

where ܰ א 2Գ is the number of basis functions. Each ߔሺx, yሻ 
captures the contribution of a local spatial region of the flow 
process. The basis vectors are to cover the spatial region of 
interest in both the longitudinal and lateral directions, and have 
the following form 

,ݔሺߔ ሻݕ ൌ 
,ݔ,௨ሺߔ ሻݕ
,ݔ,௩ሺߔ ሻ൨ݕ , ݅ ൌ 1, … , ܰ (5) 

Here the longitudinal component ߔ,௨ is defined as 

,ݔ,௨ ሺߔ ሻݕ ൌ ൞
Υሺݔ, ,ሻݕ ݅ ൌ 1, … ,

ܰ
2

 

                   0, ݅ ൌ
ܰ
2

 1, … , ܰ
 (6) 

and the lateral component ߔ,௩ is defined as 

,ݔ,௩ ሺߔ ሻݕ ൌ ൞
         0,        ݅ ൌ 1, … ,

ܰ
2

 

Υ
ି

ே
ଶ

ሺݔ, ,ሻݕ ݅ ൌ
ܰ
2

 1, … , ܰ
 (7) 

where the functions Υ   Թଶ ՜ Թ for ݅ ൌ 1, … , ܰ/2 are simply 
the wavelet function shifted and scaled appropriately, which 
can be obtained numerically by the cascade algorithm. This 
basically consists of taking a coefficient matrix that has the 
value one at the coefficient of interest and is zeros elsewhere, 
and then inverse transforming iteratively. Depending on the 
location of the wavelet coefficient, the oscillating part of the 
function ߶ will be located in a different region of the spatial 
domain. One must therefore pick a number of suitable ߶ 
functions whose support in Թଶ  covers the spatial area of 
interest. The value N is then twice this number, as seen from 
(6) and (7). If the wavelet function is orthogonal, then it holds 
that 

,ሺxߔۃ yሻ, ,୨ሺxߔ yሻۄ ൌ 0,  for ݅ ് ݆ (8) 

and the wavelet coefficient ܽሺݐሻ in (4) becomes the projection 
of the flow snapshots onto the basis function ߔ. This allows 
for interpreting the basis vectors ߔ as a set of coordinate axes 
which create an N dimensional subspace, and the coefficients 
ܽ as the components of the flow variable ݍ on these axes. 

Having obtained an expansion of the flow as in (4), it is 
seen that the time variation of the flow is dictated by the 
coefficients ܽ, since the vectors ߔare constant with respect to 
time. Thus the modeling task for the flow is reduced to fitting a 
suitable dynamical model to the trajectories  ܽሺݐሻ . For this 
purpose a state-space model of the following form will be 
sought 

ݐሺߦ                     ௦ܶሻ ൌ ሻݐሺߦܣ  ሻ   (9)ݐሺߛܤ 

ሻݐሺݕ ൌ ሻݐሺߦܥ  ሻ (10)ݐሺߛܦ 

which is a discrete-time model since the flow snapshots are 
available at discrete time values separated by a sampling period 
of ௦ܶ א Թ seconds. Here, ߦ א Թ is the state vector, ݊ א Գ  is 
the degree of the system, ߛ א Թ  is control input and  ݕ א Թே is 

the output signal. The matrices A, B, C and D determine the 
dynamical system and are to be obtained by constructing a 
model of the form (9)-(10) using system identification 
techniques. To construct the data for system identification, 
various input signals, e.g. sine waves, ramp functions and chirp 
signals, are applied to the system at a sampling period of ௦ܶ, 
and the snapshots resulting are recorded. Applying wavelet 
transform to these snapshots yields the system output, which 
consists of the  ܰ wavelet coefficients representing the region 
of interest, i.e. 

ሻݐሺݕ ൌ ܽሺݐሻ ൌ ሾܽଵሺݐሻ  ܽଶሺݐሻ … ܽேሺݐሻሿ் (11)

From the input-output data obtained as described, subspace 
system identification methods (N4SID) are used for obtaining 
the A, B, C and D matrices in (9)-(10). These methods first 
construct the state trajectories termed the Kalman states, and 
then obtain the state matrices from these states using least 
squares techniques. The reader interested in further details 
regarding subspace system identification methods is referred to 
[10, 11]. 

The dynamical regional modeling approach described in 
this section is best illustrated by means of an example, as will 
be presented in the next section. 

IV. APPLICATION EXAMPLE 

In this example we consider the fluid flow over a two-
dimensional square region ߗ ൌ ሾ0,1ሿ ൈ ሾ0, 1ሿ ؿ Թଶ, where the 
fluid dynamics is governed by the Navier-Stokes equations (3) 
and the control input affects the system through the boundary 
conditions. The main goal is to obtain a dynamical model for a 
region of interest ߗோ ൌ ሾ0.3878, 0.5102ሿ ൈ ሾ0.4694 , 0.5918ሿ 
located within ߗ  . After the model is at hand, we will also 
illustrate how this model can be used to realize a control task 
within the region. 

First let us rewrite the Navier-Stokes equations (3) in two 
dimensions as  

ݑ߲
ݐ߲


ݑ߲
ݔ߲

ݑ 
ݑ߲
ݕ߲

ݒ ൌ
߲
ݔ߲

 ߥ ቆ
߲ଶݑ
ଶݔ߲ 

߲ଶݑ
 ଶቇ (12)ݕ߲

ݒ߲
ݐ߲


ݒ߲
ݔ߲

ݑ 
ݒ߲
ݕ߲

ݒ ൌ
߲
ݕ߲

 ߥ ቆ
߲ଶݒ
ଶݔ߲ 

߲ଶݒ
 ଶቇ (13)ݕ߲

where ݍሺݔ, ,ݕ ሻݐ ൌ ሾݑሺݔ, ,ݕ ,ݔሺݒ  ሻݐ ,ݕ ሻሿݐ א Թଶ  is the flow 
velocity and ݑ and ݒ  are components in the longitudinal and 
lateral directions. We take the viscosity value as ߥ ൌ 0.1, the 
initial conditions as 

,ݔሺݑ ,ݕ 0ሻ ൌ ,ݔሺݒ ,ݕ 0ሻ ൌ 0 
(14)

 

and the boundary conditions as 

,ݔሺݑ 0, ሻݐ ൌ ,ݔሺݑ 1, ሻݐ ൌ 1 (15)

,ݔሺݒ 0, ሻݐ ൌ ,ݔሺݒ 1, ሻݐ ൌ 0 (16)

,ሺ0ݑ ,ݕ ሻݐ ൌ 0,
ݒ߲
ݔ߲

ሺ0, ,ݕ ሻݐ ൌ 0 (17) 
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,ሺ1ݑ ,ݕ ሻݐ ൌ ቐ
0, ݕ א ሾ0, 0.42ሻ

ݕ       ,ሻݐሺߛ א ሾ0.42,0.58ሿ
0, ݕ א ሺ0.58, 1ሿ

 (18) 

,ሺ1ݒ ,ݕ ሻݐ ൌ 0 (19)

where ߛ א Թ is the control input.  

As the first step of the procedure described in Section III, 
the Navier-Stokes equations above were simulated using 
Navier2d, a Navier-Stokes CFD solver for MATLAB [12]. 
Several simulations were carried out under different inputs, 
including zero-input, chirp signal, square wave, ramp function 
and white noise. Each simulation was carried out with a time 
step of ௦ܶ ൌ 0.0014 seconds for 1000 time steps on a 50 ൈ 50 
uniform grid of the spatial domain. The snapshots for the 
simulation with chirp signal input are shown in Figures 2 and 3. 
Next a wavelet decomposition of the snapshots was performed 
at various levels using different wavelet functions with the help 
of MATLAB Wavelet Toolbox. Evaluating these 
decomposition, we have decided to use a two level 
decomposition using the Daubechies wavelet for the rest of the 
modeling procedure. This wavelet function is asymmetric with 

a near random structure, is orthogonal, produces exact 
reconstruction, has a finite support area, and the highest 
number of vanishing moments for a given support width. These 
properties make the Daubechies wavelet a suitable candidate 
for representing snapshots taken from fluid flow processes. In 
addition the availability of fast and efficient methods for 
obtaining DWT and inverse DWT with the Daubechies wavelet 
makes it possible to process a high number of snapshots in a 
short time. Figure 4 shows the u-component of a sample 
snapshot together with its two level decomposition using the 
Daubechies wavelet. Also shown in the figure is the result of 
applying thresholding to the wavelet coefficients. Different 
values for the threshold ܶ were tested, and it was observed that 
under the selected level and wavelet function, the thresholded 
coefficients produce good reconstructions, even for very small 
values of  ܶ . In fact, the reconstruction is satisfactory even 
for ܶ ൌ 0, which is the case shown in the figure. This implies 
that even if all the detail coefficients are omitted, the 
approximation coefficients are adequate to reconstruct the 
snapshot. The results for the v-component of the snapshot were 
equally satisfactory, and so were the results for the other 999 
snapshots. This result is a further justification for the selected 
wavelet function and the level of decomposition.  

Once the wavelet type and the level of decomposition is 
determined, it is possible to construct the basis vectors ߔ. To 
cover the domain of interest ߗோ, it turns out that one needs to 
use four vectors per direction, making a total of eight basis 
vectors, which can be defined as in (5)-(7). The functions Υ for 
݅ ൌ 1, … ,4 are shown in Figure 5 where it can be seen that the 
region of interest ߗோ is contained within the support of these 
functions.  Having obtained the basis vectors ߔ, it is possible 
to expand the flow as 

Figure 2. Flow snapshots under chirp excitation (u-component) 

Figure 3. Flow snapshots under chirp excitation (v-component) 

 

 
 

 
 

Figure 4. Original snapshot (top left), wavelet coefficients resulting from two 
level decomposition using Daubechies wavelet (bottom left), thresholded 

wavelet coefficients (bottom right), snapshot reconstructed from thresholded 
coefficients (top right). 

579

Authorized licensed use limited to: ULAKBIM UASL - TOBB Ekonomi ve Teknoloji Univ. Downloaded on July 01,2010 at 16:58:02 UTC from IEEE Xplore.  Restrictions apply. 



,ݔሺݍ ,ݕ ሻݐ ൌ  ܽሺݐሻߔሺݔ, ሻݕ

଼

ୀଵ

 (20) 

where ܽ are the approximation coefficients.  

The step after obtaining the basis functions ߔ  is the 
generation of input-output data for the identification of a state-
space dynamical model. Recall that the system output for 
identification purposes is  

ሻݐሺݕ ൌ ܽሺݐሻ ൌ ሾܽଵሺݐሻ  ܽଶሺݐሻ … ଼ܽሺݐሻሿ் (21)

which can obtained by wavelet transforming the snapshots of 
the system under various test inputs and recording the 
coefficients of interest. The output data resulting from the zero-
input case and the chirp signal case are shown in Figure 6. 
Output data under other input trajectories including square 
waves, ramp functions and white noise signals have also been 
obtained and recorded. We use these input-output data to obtain 
a dynamical system of the form (9)-(10) using subspace system 
identification methods (N4SID) available through the 
MATLAB System Identification Toolbox. For this purpose we 
split the first half of the data for estimation, whereas the second 

half is reserved for validation. The function N4SID is then 
called with its default parameter values. Subsequent trials show 
that a satisfactory fit to the data can be obtained for a tenth 
order model, whose response under zero input and under chirp 
signal input is shown in Figure 7. Comparing with Figure 6, 
one can see that the responses are very close to each other. The 
results were similar for other inputs tested as well; thus, one 
can state that the model constructed is satisfactory in 
representing dynamics of the spatial region ߗோ  of interest. 

Undoubtedly, the main purpose for building a dynamical model 
for the region of interest ߗோ is to carry out a control design task 
within the region. Let us assume, for the sake of illustration, 
that the control goal is to regulate the longitudinal velocity of 
the point  ሺݔ, ሻݕ ൌ ሺ0.5, 0.5ሻ א ோߗ . Let us denote this 
quantity to regulated as ݕଶ, which can be written from (20) as 

ሻݐଶሺݕ ൌ ,ݔሺݑ ,ݕ ሻݐ ൌ  ܽሺݐሻߔ,௨ሺݔ, ሻݕ
଼

ୀଵ
ൌ:  ሻݐᇱܽሺܥ

 

(22) 

where ܥԢ is the 1 ൈ 8 matrix 

:Ԣܥ ൌ ,ݔଵ,௨ሺߔൣ ሻݕ ,ݔଶ,௨ሺߔ ,ݔ௨ሺ,଼ߔ     …   ሻݕ  ሻ൧ (23)ݕ

Then from (21) and (10)  

ଶݕ ൌ ᇱܽܥ ൌ ߦܥᇱሺܥ   ሻߛܦ
ൌ ߦܥᇱܥ   ߛܦᇱܥ
ൌ ߦଶܥ   ߛଶܦ

 

(24)

where ܥଶ: ൌ ܥԢܥ  and ଶܦ  ؔ ܦԢܥ . Then, augmenting the state 
dynamics (9) with the output to be regulated we obtain 

ݐሺߦ  ௦ܶሻ ൌ ሻݐሺߦܣ  ሻݐሺߛܤ 
ሻݐଶሺݕ ൌ ሻݐሺߦଶܥ  ܦଶߛሺݐሻ 

(25)

(26)

which is a single-input single-output system from ߛ to ݕଶ. Let 
ݕ  denote the reference signal to be tracked by ଶݕ  . To 
achieve the desired tracking one may design a compensator  ܭ 
with transfer function  

Figure 5. The functions {ળሽ
  for constructing the basis vectors ሼሽ

ૡ  

Figure 6. Coefficients obtained from snapshots 
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Figure 7. Coefficients obtained from the dynamical model 
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ሻݖሺܭ ൌ
Γሺݖሻ

ሻݖሺܧ
 (27) 

where Γሺݖሻ  is the z-transform of ߛሺݐሻ and ܧሺݖሻ is the z-
transform of the tracking error ݁ሺݐሻ: ൌ ሻݐሺݕ െ ሻݐଶሺݕ . A 
variety of standard and automated design methods exist for 
obtaining ሻݖሺܭ  , including PID tuning techniques, internal 
model control (IMC) design methods, LQG synthesis, and 
optimization based design. For the problem at hand, numerous 
compensators of different orders were designed using these 
methods with the help of MATLAB Control Systems Toolbox. 
The best results were obtained for the following third order 
compensator built using IMC design methods [13, 14] 

ሻݖሺܭ ൌ െ0.649
ሺݖ െ 1.79ሻሺݖ െ 0.995ሻሺݖ െ 0.976ሻ

ሺݖ െ 1ሻ ሺݖ െ 0.994ሻ ሺݖ െ 0.938ሻ
 (28) 

This compensator was applied to the flow problem described 
by (12)-(19) and CFD simulations were carried out. For the 
simulations, the reference signal ݕ was kept constant at  0.5 
for until about ݐ ൌ 0.7 seconds, after which it was switched 
to െ0.5. To make the situation more challenging and realistic, 
we also added disturbances to the input and output of the 
system. The disturbances applied were in the form of white 
noise signals with magnitude 0.05, which is 10% of the 
reference signal. The trajectory of the point  ሺݔ, ሻݕ  ൌ
ሺ0.5, 0.5ሻ of interest, together with the reference signal ݕ is 
shown in Figure 8. It can be observed from the figures that the 
closed-loop system formed with the controller (28) is 
successful in accomplishing the desired tracking and keeping 
the velocity of the given point close to the reference signal. 

In summary it can be stated that regional dynamical model 
built using the approach suggested in the paper represents the 
flow process adequately, and a control design carried out 
utilizing this model produces satisfactory results when applied 
to the complex PDE system governing the flow dynamics. 

V. CONCLUSIONS AND FUTURE WORKS 

In this study, a novel method for regional dynamical 
modeling of flow control problems using wavelet transform is 
proposed. The approach developed is illustrated on a sample 
flow control problem governed by the Navier-Stokes PDEs, 
where the input affects the system through the boundary 
conditions. The main contribution of this work is to present a 
systematic method to construct linear dynamical models 
representing a local spatial region of interest for flow control 
problems. Future research directions include employing 
different identification schemes and application of the 
techniques to different flow control problems. 

ACKNOWLEDGMENT 

The authors would like to acknowledge the libraries of 
TOBB University of Economics and Technology for providing 
valuable resources used in this study. 

REFERENCES 
[1] M. Gad-el Hak, Flow Control - Passive, Active, and Reactive Flow 
Management. New York, NY: Cambridge University Press, 2000. 

[2] T. Bewley, “Flow control: new challenges for a new Renaissance,” 
Progress in Aerospace Sciences, vol. 37, no. 1, pp. 21–58, 2001. 

[3] P. Holmes, J. Lumley, and G. Berkooz, Turbulence, Coherent 
Structures, Dynamical System, and Symmetry. Cambridge: Cambridge 
University Press, 1996. 

[4] L. Sirovich, “Turbulence and the dynamics of coherent structures,” 
Quarterly of Applied Math., vol. XLV, no. 3, pp. 561–590, 1987. 

[5] C. W. Rowley, T. Colonius, and R. M. Murray, “Model reduction 
for compressible flows using POD and Galerkin projection,” Physica D, vol. 
189, no. 1-2, pp. 115–29, 2004. 

[6] I. Daubechies and B. Bates, “Ten Lectures on Wavelets,” The 
Journal of the Acoustical Society of America, vol. 93, p. 1671, 1993. 

[7] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, 
1999. 

[8] C. Chui, An Introduction to Wavelets. Academic Press, 1992. 

[9] G. Strang and T. Nguyen, Wavelets and Filter Banks. Wellesley 
Cambridge Pr, 1996. 

[10] P. Van Overschee and B. De Moor, Subspace Identification for 
Linear Systems: Theory, implementation, applications. Kluwer Academic 
Publishers, 1996. 

[11] W. Larimore, “Statistical optimality and canonical variate analysis 
system identification,” Signal Processing, vol. 52, no. 2, pp. 131–144, 1996. 

[12] D. Engwirda, “An unstructured mesh navier-stokes solver,” 
Master's thesis, School of Engineering, University of Sydney, 2005. 

[13] I. Chien and P. Fruehauf, “Consider IMC tuning to improve 
controller performance,” Chem. Eng. Prog, vol. 86, no. 10, pp. 33–41, 1990. 

[14] D. Rlvera, M. Morarl, and S. Skogestad, “Internal Model Control. 
4. PID Controller Design,” Industrial Engineering Chemistry Process Design 
and Development, vol. 25, no. 1, pp. 252–265, 1986. 

 
 

Figure 8. u-velocity of the point ሺࢉ࢞,  ࢌࢋ࢘࢟ ሻ and the reference signalࢉ࢟
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