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Abstract— In this paper a systematic method is proposed
for the modeling and control of flow problems, as well as
the evaluation of closed loop performance and robustness.
A nonlinear Galerkin model representing the flow dynamics
is approximated with an adaptation based linear parameter
varying (LPV) system, and it is shown that the LPV model
can represent the Galerkin model with acceptable error. This
allows for one to use the simple LPV model in place of the
more complex nonlinear Galerkin model for modeling the
flow process. The error vector is interpreted as an external
disturbance for the model and the parameter range suggested
by the adaptation process is interpreted as the uncertaintyrange
in which the the control design must perform satisfactorily.
The approach developed is illustrated on a sample problem of
controlling a flow governed by the Navier-Stokes equations.

I. I NTRODUCTION

The potential benefits offered by the ability to model
and control fluid flow are vast, including reduced fuel
costs for vehicles, and improved effectiveness of industrial
processes; this makes flow control highly important from a
technological viewpoint [1]. A few of the myriad studies on
the topic include the control of channel flows [2], control
of combustion instability [3], stabilization of bluff-body
flow [4], control of cylinder wakes [5] and the control of
cavity flows [6].

In this paper a systematic approach is built for the
modeling and control design of flow problems, as well
as the evaluation of closed loop robustness. An adaptation
mechanism is built to yield a LPV model approximating the
nonlinear Galerkin model representing the flow dynamics. It
shown that, with proper choice of adaptation parameters, the
LPV approximation can be made the represent the nonlinear
Galerkin model with reasonably small error. This allows
one to treat the LPV model as the actual flow model,
with the error vector entering as a disturbance, and the
parameter variations providing a range of uncertainty in
which the control design must perform satisfactorily. The
idea is illustrated through an example regarding flow on a
square domain governed by Navier-Stokes equations.

II. PROBLEM DESCRIPTION

The dynamics of flow processes are described by partial
differential equations (PDEs) such as the Navier-Stokes
Equations or Burgers’ Equations, to which the control input
enters through the boundary conditions. While these equa-
tions model the flow very accurately, they are quite complex,
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making it very difficult to use these PDEs directly for
analysis and control design. For this reason these equations
are commonly converted to low order Galerkin models, using
standard methods such as Proper Orthogonal Decomposition
(POD), Galerkin Projection (GP) [7], and extensions to these
methods such as Input Separation techniques [8], [9]. The
resulting model is termed aGalerkin model and has the
following structure:
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for i = 1, . . . , n, where a = {ai}n
i=1 ∈ R

n is the state
vector andγ = {γi}m

i=1 ∈ R
m is the control input. The

system above can be expressed in compact form as
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system above is finite and of low order, it includes nonlinear
terms both in the statea and the inputγ, which present
difficulties for analysis and control design. The approach
followed in this paper aims at easing the analysis and control
design process for this model, and can be summarized as
follows: First a LPV system approximating system (2) is
obtained, which has the following form

˙̂a = L̂(θL)â+ L̂in(θL)γ + L̂err(θL)e (3)

whereθL = t 7→ θL(t) is the time-varying parameter vector
ande := â−a is the error vector, which is desired to remain
small and bounded ast → ∞. The parameter vectorθL is
modified through an adaptation mechanism. The states of the
system (3) will be called theadapted states or reconstructed
states. After the LPV system in (3) is obtained, a nominal
LTI system is extracted from this system, on which control
design is performed using standard LTI control theory. The
adaptation mechanism is used to determine an uncertainty
range for the parameter vectorθL, and the closed loop system
is tested and evaluated for performance in this uncertainly
range.



III. O BTAINING A LPV MODEL APPROXIMATING THE

GALERKIN SYSTEM THROUGH ADAPTATION

In this section a LPV system of the form (3) is built to
approximate the Galerkin system (2). First note that while
system (1) is a nonlinear system ina andγ, it is linear in its
parameter values contained inL, Q, Lin, Qin andQain. To
write the dynamics in a form where this linear dependance
is apparent, let us first build the parameter vectorθ as

θ := col (L(:), Lin(:), Q(:), Qin(:), Qain(:)) (4)

where col stands for column vector, i.e.
col{x1, x2, . . . , xn} = [xT

1 xT
2 . . . xT

n ]T , and L(:)
denotes the column vector formed by stacking all elements
of L on top of each other, i.e.

L(:) := col (L11, L21, . . . , Ln1, . . . , Ln1, Ln2, . . . Lnn) .
(5)

The column vectorsLin(:), Q(:), Qin(:) andQain(:) can be
defined similarly. One can also defineΦ : R

n × R
m →

R
n × R

p to satisfy the expression

ȧ = Φ(a, γ)θ (6)

whereΦ(a, γ) is a n× p dimensional matrix with elements
{Φ(a, γ)ij | i = 1, . . . , n, j = 1, . . . , p}. Here, Φ(a, γ)ij

denotes the element at rowi and columnj and corresponds
to the contribution of thejth parameter ofθ to theith element
a. The next step is the design of the adaptation mechanism
that will modify the system parameters. First, the Galerkin
system (6) is written as

ȧ = Φ(a, γ)θ

ȧ = ΦL(a, γ)θL + ΦN(a, γ)θN

ȧ = La+ Linγ +Q(a, a) +Qain(a, γ) +Qin(γ, γ) (7)

where the linear and nonlinear parts of the system have been
split as

ΦL(a, γ)θL := La+ Linγ

ΦN (a, γ)θN := Q(a, a) +Qain(a, γ) +Qin(γ, γ) . (8)

We will also assume that‖col(a, γ)‖ ≤ ‖col(a, γ)‖∞ for
some‖col(a, γ)‖∞ ∈ R+ for all t ≥ 0.1 The goal is to obtain
a linear model whose parameters will be modified by the
adaptation mechanism to match the Galerkin system above.
For this purpose one can construct a parameter adaptation
mechanism in which the underlying model structure is based
on only the linear part of the Galerkin model as follows

˙̂
θL = −αΦT

L(a, γ)e− αΥb(θ̂L) (9)
˙̂a = ΦL(a, γ)θ̂L − ke = L̂a+ L̂inγ − ke (10)

where e = â − a, k ∈ R+, α ∈ R+, and b ∈ R+. The
function Υb : R

n → R
n with b ∈ R+ is a dead-zone like

1This assumption is justified from a physical perspective as for most real-
life processes, the actuators can only produce finite inputs, and the system
will not “blow up” under such inputs.

function such that

Υb(x) =

{

0, ‖x‖ ≤ b;
x− bx/‖x‖, ‖x‖ > b .

(11)

We now state the following theorem regarding the operation
of the adaptation mechanism.

Theorem 1: Consider the system in (7) and adaptation
mechanism given in (9)-(10). For this system and adaptation
mechanism, the state errore := â − a and the error on the
linear part of the adapted parameter vectorθ̃L := θ̂L − θL

will remain bounded for allt, and∃k1, k2, k3, k4 ∈ R+ and
a classN function2 ρ where
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2α
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}
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2 , ‖Qain‖

2 + ‖Qin‖
}

(14)

k4 :=3b (15)

ρ(x) :=max
{

ε−1k3x
2, k4

}

(16)

such that

‖col(e, θ̃L)‖ ≤
√

k2/k1ρ(‖col(a, u)‖∞) (17)

as t→ ∞, for any0 < ε < k.
Proof: The proof is given in the Appendix.

It follows from the theorem that, while it is not possible to
drive the errore to zero, it is possible to keep it acceptably
small through proper selection of the internal parametersα
andk of the adaptation mechanism. Note also that (10) can
be manipulated as

˙̂a = L̂(â− e) + L̂inγ − ke

˙̂a = L̂â+ L̂inγ + L̂erre (18)

where L̂err = −(L̂ + kI). One can then see that (18)
is of the same form as (3). Thus, one can now regard
the system above as a LPV system that approximates the
nonlinear Galerkin system (7), with the signale entering as
an external disturbance. With this interpretation, instead of
dealing with a nonlinear system (i.e. the Galerkin system),
one can carry out the control design on a linear system (e.g.
a nominal linear time invariant (LTI) plant extracted from the
LPV model) making sure that the controller also performs
satisfactorily for the range of parameters predicted by the
adaptation mechanism. Figure 1 shows a block diagram
illustrating this idea for a tracking problem, with input and
output disturbances also marked, in addition to the additional
disturbance due to the adaptation error. The approach shown
in the figure will be illustrated next with a flow control
example governed by Navier-Stokes equations on a square
domain.

2Continuous, non-decreasing, and non-negative.



reference

input
disturbance

output
disturbance

output

adaptation error
distrubance

adaptation error

plant input

output

LPV Model
Approximation of
Galerkin Model

track errorcommand

Controller

Fig. 1. Using a LPV model approximating the nonlinear Galerkin model
for a reference tracking problem.

IV. EXAMPLE : BOUNDARY CONTROL OF2D
INCOMPRESSIBLENAVIER-STOKES EQUATIONS ON A

SQUARE DOMAIN

A. Problem Description

Consider the two-dimensional non-dimensional Navier-
Stokes equation

∂q

∂t
+ (q · ∇)q = −∇p+ ν∆q (19)

subject to the incompressibility condition∇ · q = 0, where
ν = Re−1 andRe is theReynolds number. Let p(x, y, t) ∈ R

denote the pressure, andq(x, y, t) = (u(x, y, t) v(u, x, t)) ∈
R

2 denote the flow velocity, whereu andv are the compo-
nents in the longitudinal and latitudinal directions, respec-
tively. In the given coordinates, equation (19) reads as
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+
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∂x
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.(20)

For our example, the viscosity is set toν = 0.1, and the
spatial domain is defined asΩ = [0, 1] × [0, 1]. The initial
conditions areu(x, y, 0) = v(x, y, 0) = 0 and the boundary
conditions are

u(x, 0, t) = 1, v(x, 0, t) = 0

u(x, 1, t) = 1, v(x, 1, t) = 0

u(0, y, t) = 0,
∂v

∂x
(0, y, t) = 0

u(1, y, t) =







0, y ∈ [0, 0.42);
γ(t), y ∈ [0.42, 0.58];
0, y ∈ (0.58, 1].

v(1, y, t) = 0

whereγ ∈ R is the control input. For this example, we shall
define the control task as controlling the longitudinal speed
at a given point(xc, yc) ∈ Ω. In other words, if the system
outputy is defined as

y(t) = u(xc, yc, t) (21)

and a reference signalyref : t 7→ yref(t) is given, then the
goal is to achievey → yref .

B. Modeling of the Flow Process

It was shown in detail in [9] how a Galerkin system in
the form (2) can be obtained from the Navier-Stokes equa-
tions (20) using proper orthogonal decomposition (POD),
Galerkin Projection (GP) and input separation (IS). In this
paper the results from this study will be used directly without
repeating the derivations. However for control design, the
system (2) must be augmented with an output equation. For
this purpose an expanded POD expansion for (21) can be
written as

y(t) =u(xc, yc, t) =

n
∑

i=1

ai(t)φi,u(xc, yc) + γ(t)ψu(xc, yc)

y =Louta+ Lout,inγ . (22)

where φi are the POD baseline modes,ψ is the actu-
ation mode,u is the flow in the longitudinal direction,
Lout := [φ1,u(xc, yc) φ2,u(xc, yc) φ3,u(xc, yc)] ∈ R

1×3 and
Lout,in := ψu(xc, yc) ∈ R.

C. Setting up the Adaptation Mechanism to Obtain the LPV
Model

After the reduced order model is obtained, the next step is
to build an adaptation mechanism as described in Section III.
Recall that while the original Galerkin system (2) is nonlinear
and contains quadratic terms, for the underlying model in
estimation we wish to utilize only the linear portion of
the model so as to produce a LPV model to be used for
the control design process at the next stage. To reduce the
number parameters in the adaptation process and simplify
the calculations it will be assumed that the Galerkin system
has been transformed into modal form. In this case, it was
shown in [9] that the eigenvalues forL are of the form
spec(L) = {λ1, λ2, λ3} and thereforeL andLin in modal
form are

L =





λ1 0 0
0 λ2 0
0 0 λ3



 , Lin =





b1
b2
b3



 . (23)

where λ1, λ2, λ3, b1, b2, b3 ∈ R. Define θ̂L :=
[λ̂1 λ̂2 λ̂3 b̂1 b̂2 b̂3]

T and

ΦL(a, u) :=





a1 0 0 γ 0 0
0 a2 0 0 γ 0
0 0 a3 0 0 γ



 .

With these definitions, we set up the parameter adaptation
mechanism (9) and the LPV model (10) whose parameters
are varied by this adaptation mechanism. Recall that the
main goal of the adaptation mechanism is to provide an
estimate for the rangeΘ in which the parameters of the
LPV system will vary. For this purpose a high number input
signals of various types we applied to the Galerkin system
including ramp functions, sine functions, chirp functions,
square waves and white noise, and the values assumed by
the parameters under these excitation signals were recorded.



Observing the range in which the parameter values vary with
these excitations, the rangeΘ such that̂θL ∈ Θ is chosen to
be the 6-dimensional box

Θ =
{

θ̂L ∈ R
6 : −209.83 < λ̂1 < −139.89,

− 10.79 < λ̂2 < −7.19,−40.10 < λ̂3 < −26.73,

− 28.90 < b̂1 < −2.72,−5.36 < b̂2 < −0.73,

− 5.24 < b̂3 < −1.20
}

. (24)

Recall also that the adaptation system has two design pa-
rameters,α and k, that determine the rate of convergence
of the scheme and also the bound on the errore = â − a.
(cf. Theorem 1). Based also on the various types of inputs
mentioned above, these parameters were chosen ask = 1000
andα = 100 which were seen to yield‖e‖ < 10−3 for all
excitation cases mentioned above.

D. Controller Design and Evaluation

Once the rangeΘ for the parameter vector is known
as in (24), the control design and evaluation is carried
out in the following steps: 1) Extract a nominal LTI
model from the LPV system, 2) Design a controller for
the nominal model using standard LTI design methods
(e.g. LQR, PI, PID, etc.), 3) Assure that controller de-
signed performs satisfactorily over the entire parameter
range Θ. To obtain the LTI nominal plant for the first
step, the parameters are simply fixed at some point near
the center of the parameter rangeΘ in (24) as follows:
θ̂Ln := col{−175,−8.99,−33.4,−15.81,−3.05,−3.22},
which yields the nominal LTI plant

˙̂a = L̂(θ̂Ln)â+ L̂in(θ̂Ln)γ + L̂err(θ̂Ln)e

y = Louta+ Lout,inγ . (25)

where the parameter dependency ofL̂, L̂in and L̂err have
been shown explicitly.3 For step two, we choose a simple PI
controller for the nominal plant in (25) as follows

C(s) := 5 +
500

s
(26)

whereΓ(s) = C(s)Er(s), Γ is the transfer function of the
input γ, andEr is that ofer := yref − y, the tracking error.
The third step is the verification that the controller performs
satisfactorily for the entire parameter rangeΘ. Figure 2
shows the closed loop step response of the system from
the referenceyref to outputy for the nominal plant and ten
random values of the parameter vectorθ̂L. It can be seen
that the closed loop system is successful is tracking the step
reference in all cases. Figure 3 shows the closed loop step
response from the adaptation errore to out to outputy for the
nominal plant and ten random values of the parameter vector
θ̂L. Recall that the adaptation errore := col{e1, e2, e3} is
regarded as a disturbance for the system, as seen in Figure 1.
It can be seen that a step error does not cause instability
and the worst amplification is frome2 to y, which is about

3Recall thatLout andLout,in are not parameter dependent. Recall also
that the adaptation errore is treated as a disturbance

0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 
From: r  To: y

Step Response

Time (sec)

A
m

pl
itu

de

Samples
Nominal

Fig. 2. Step response of the closed loop system from reference yref to
outputy for ten random values of the parameter vector.
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Fig. 3. Step response of the closed loop system from the adaptation error
e to outputy for ten random values of the parameter vector.

five times. As mentioned in Section IV-C, the adaptation
parametersk andα were chosen so as to limit the the error
amplitude to‖e‖ < 10−3; hence a five-time amplification
will yield to an error contribution of at most0.005 at the
output, which is acceptable. The parameter rangeΘ provided
by the adaptation mechanism is also useful in determining
the sensitivity to input and output disturbances, entering
the system as shown in Figure 1. Figure 4 shows the step
response and Figure 5 shows the frequency response of the
closed loop system to an input disturbance for the nominal
plant and ten random values of the parameter vector. The
value of the parameter vector yielding to the highest peak in
the frequency response and its corresponding step response
are also shown with dashed lines in the figures. The figures
indicate that the closed loop system in general has good input
disturbance rejection properties, but one needs to be careful
if input noise of high amplitude around15 rad/s is expected
since its attenuation may be slow and may interfere with the
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command signal given from the controller. A similar analysis
can be carried out for the case of output disturbance.

The next step is to connect the controller in feedback
with the actual Navier-Stokes equations (20) and perform
computational fluid dynamics (CFD) simulations to evaluate
the performance of the closed loop system. For this purpose
Navier2d solver under MATLAB [10] was utilized, with the
reference signalyref being a step signal dropping from0.5
to −0.5 at t = 0.7 seconds. In addition, an input noise
of 0.5 sin(15t) was also applied to the system; recall from
Figure 5 thatω = 15 rad/s is the frequency under which the
frequency response peaks for the worst case. The snapshots
for the CFD simulation for this case are shown in Figures 6-
7 and the system output (21), i.e. theu-velocity at the center
of the domain, is shown in Figure 8. It can be observed that
the closed loop system is successful in tracking the input
reference, while at the same time significantly attenuating
the effect of the input disturbance to the output, which is

Fig. 6. Snapshots (u-component) of CFD simulation for the Navier-Stokes
system under closed loop with input noise.

Fig. 7. Snapshots (v-component) of CFD simulation for the Navier-Stokes
system under closed loop with input noise.
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consistent with the earlier analysis based on the LPV model
approximation.

V. CONCLUSIONS ANDFUTURE WORKS

In this paper we considered a systematic approach to the
modeling and control design of flow problems, as well as
the evaluation of closed loop performance and robustness.
An adaptation scheme was then built to yield a LPV model
approximating the nonlinear Galerkin model representing the
flow and it was shown that the LPV approximation can
be made to represent the nonlinear Galerkin model with
reasonably small error. This allowed for the treatment of
the LPV model as the actual flow model, with the error
vector entering as a disturbance, and the parameter variations
providing a range of uncertainty in which the control de-
sign must perform satisfactorily. The idea was demonstrated
through a Navier-Stokes flow control example on a square
domain, where the control goal was to make the center point
longitudinal velocity track a given reference.

Our current and future research directions include utilizing
the parameters from the adaptation scheme in the controller
design (e.g. scheduling techniques), obtaining LPV model
approximations for different reduced order models and test-
ing current and new approaches on other flow control case
studies.

APPENDIX

PROOF OFTHEOREM 1

To analyze the stability and boundedness of (8)-(10) we
first define a Lyapunov-like function

V (e, θ̃L) =
1

2
‖e‖2 +

1

2α
‖θ̃L‖

2 .

This function is positive definite and quadratic, and can be
bounded from the above and below by the positive definite
functions

W1

(

col(e, θ̃L)
)

:=k1‖col(e, θ̃L)‖2 (27)

W2

(

col(e, θ̃L)
)

:=k2‖col(e, θ̃L)‖2 (28)

with k1 := min{ 1
2 ,

1
2α

} andk2 := max{ 1
2 ,

1
2α

}. Differenti-
atingV along the trajectories of the system (9)-(10) yields

V̇ = eT ė+
1

α
θ̃T

L
˙̃θL = eT ( ˙̂a− ȧ) +

1

α
θ̃T

L
˙̂
θL

≤− k‖e‖2 + ‖e‖‖Q‖‖a‖2 + ‖e‖‖Qain‖‖a‖‖γ‖

+ ‖e‖‖Qin‖‖γ‖
2 − ΥT

b (θ̃L + θL)θ̃L .

Pick anyε such that0 < ε < k. Then

V̇ ≤− (k − ε)‖e‖2 + ‖e‖
(

− ε‖e‖+ ‖Q‖‖a‖2

+ ‖Qain‖‖a‖‖γ‖+ ‖Qin‖‖γ‖
2
)

− ΥT
b (θ̃L + θL)θ̃L

+ ‖e‖‖Qin‖‖γ‖
2 − ΥT

b (θ̃L + θL)θ̃L

≤− (k − ε)‖e‖2 + ‖e‖
(

−ε‖e‖ + k3‖col(a, u)‖2
)

− ΥT
b (θ̃L + θL)θ̃L (29)

where k3 := max{‖Q‖ + ‖Qain‖
2 , ‖Qain‖

2 + ‖Qin‖}, and
we have used Young’s inequality as needed.4 The first
term −(k − ε)‖e‖2 is clearly non-positive. The second
term ‖e‖

(

−ε‖e‖ + k3‖col(a, u)‖2
)

will be less than or
equal to zero if‖e‖ > ε−1k3‖col(a, γ)‖2. To show the
non-positiveness of the third term−ΥT

b (θ̃L + θL)θ̃L =
−θ̃T

LΥb(θ̃L + θL), one can easily prove that for the dead-
zone functionΥb, there existk4, k5 ∈ R+4 such that for
‖θ̃L‖ > k4 it holds that θ̃T

LΥb(θ̃L + θL) ≥ k5‖θ̃L‖2.
Thus, if it is the case that‖θ̃L‖ > k4 then it holds that
−θ̃T

LΥb(θ̃L + θL) ≤ −k5‖θ̃L‖2 ≤ 0 and hence the third
term (29) will be less than or equal to zero. Then, for the
entire state vectorcol(e, θ̃L), if

‖col(e, θ̃L)‖ >max{ε−1k3‖col(a, γ)‖2
∞, k4}

=: ρ(‖col(a, γ)‖∞) := µ (30)

then it is clear that

V̇ ≤− (k − ε)‖e‖2 + ‖e‖
(

−ε‖e‖ + k3‖col(a, u)‖2
)

− ΥT
b (θ̃L + θL)θ̃L ≤ 0

≤− (k − ε)‖e‖2 − k5‖θ̃L‖
2

≤− k6‖col(e, θ̃L)‖2 := −W3(col(e, θ̃L)) < 0

where k6 := min{k − ε, k5} > 0. Thus using (27), (28)
and (30), it can be seen that fort→ ∞ we have

W1

(

(col(e, θ̃L)
)

≤ max
‖col(e,θ̃L)‖≤µ

W2

(

col(e, θ̃L)
)

‖col(e, θ̃L)‖ ≤
√

k2/k1ρ(‖col(a, γ)‖∞)

which is the statement of the theorem.
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