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Abstract— In this paper a systematic method is proposed making it very difficult to use these PDEs directly for
for the modeling and control of flow problems, as well as analysis and control design. For this reason these eqsation
the evaluation of closed loop performance and robustness. ,.e commonly converted to low order Galerkin models, using

A nonlinear Galerkin model representing the flow dynamics o
is approximated with an adaptation based linear parameter standard methods such as Proper Orthogonal Decomposition

varying (LPV) system, and it is shown that the LPV model (POD), Galerkin Projection (GP) [7], and extensions to ¢hes
can represent the Galerkin model with acceptable error. Th methods such as Input Separation techniques [8], [9]. The
allows for one to use the simple LPV model in place of the resulting model is termed &alerkin model and has the
more complex nonlinear Galerkin model for modeling the following structure:

flow process. The error vector is interpreted as an external ’
disturbance for the model and the parameter range suggested n n non

by the adaptation process is interpreted as the uncertaintyange S ; o p
in which the the control design must perform satisfactorily i z_:L‘k% + X_:Lm’lmk + 2;@”%%
The approach developed is illustrated on a sample problem of k_lm n k=1 "f_ m_

controlling a flow governed by the Navier-Stokes equations.
+ Z Z Qain,ijkakY; + Z Z Qin,ijk kY (1)
I. INTRODUCTION j=1k=1 j=1k=1
The potential benefits offered by the ability to modekor j = 1,....n, wherea = {a;}?", € R" is the state

and control fluid flow are vast, including reduced fuelector andy = {vi}, € R™ is the control input. The
costs for vehicles, and improved effectiveness of indaistri system above can be expressed in compact form as
processes; this makes flow control highly important from a
technological viewpoint [1]. A few of the myriad studies on ¢ = La + Liny + Q(a,a) + Qain(a,v) + Qin(v,v)  (2)
the topic include the control of channel flows [2], control
of combustion instability [3], stabilization of bluff-bgd where L = {Li;}7;,_; € R™", Liy = {Linj}; o1 €
flow [4], control of cylinder wakes [5] and the control of R"*", Q(a,a) = {a"Q;a}i_; € R", Qi = {Qijk}} 1y €
CaVity flows [6] R7x™, Qain(a;V) = {aTQain,i’Y};Lzl € R, Qain,i
In this paper a systematic approach is built for thgQainijk};ie; € R™™, Qu(y,7) = {aTQina}?, €
modeling and control design of flow problems, as wWelR", Qini = {Qin,ijr}} =1 € R™*™. While the Galerkin
as the evaluation of closed loop robustness. An adaptatiegstem above is finite and of low order, it includes nonlinear
mechanism is built to yield a LPV model approximating theerms both in the state and the inputy, which present
nonlinear Galerkin model representing the flow dynamics. Hifficulties for analysis and control design. The approach
shown that, with proper choice of adaptation parametees, tifiollowed in this paper aims at easing the analysis and cbntro
LPV approximation can be made the represent the nonlinedesign process for this model, and can be summarized as
Galerkin model with reasonably small error. This allowdollows: First a LPV system approximating system (2) is
one to treat the LPV model as the actual flow modelpbtained, which has the following form
with the error vector entering as a disturbance, and the
arameter variations providing a range of uncertainty in e LR -
\F/Jvhich the control design must perform satisfactorily. The a=L(0L)a+ Lin(0L)7 + Lexe(L)e (3)
idea is illustrated through an example regarding flow on ghereg, = ¢+ 6, (t) is the time-varying parameter vector
square domain governed by Navier-Stokes equations.  ande := 4 —a is the error vector, which is desired to remain
small and bounded as— oo. The parameter vectdt;, is
modified through an adaptation mechanism. The states of the
The dynamics of flow processes are described by partigystem (3) will be called thedapted states or reconstructed
differential equations (PDEs) such as the Navier-Stokegates, After the LPV system in (3) is obtained, a nominal
Equations or Burgers’ Equations, to which the control inputT| system is extracted from this system, on which control
enters through the boundary conditions. While these equgesign is performed using standard LTI control theory. The
tions model the flow very accurately, they are quite complexdaptation mechanism is used to determine an uncertainty
R _ _ 3 range for the parameter vectyr, and the closed loop system
C. Kasnakoglu is with the Electrical and Electronics Ergiing Depart- is tested and evaluated for performance in this uncertainly
ment at TOBB University of Economics and Technology, 0656tk#a,
Turkey kasnakogl u@t u. edu. tr range.

Il. PROBLEM DESCRIPTION



IIl. OBTAINING A LPV MODEL APPROXIMATING THE function such that
GALERKIN SYSTEM THROUGH ADAPTATION

In this section a LPV system of the form (3) is built to Ty(z) = {
approximate the Galerkin system (2). First note that while
system (1) is a nonlmea_r systemdrand-y, itis linear in its We now state the following theorem regarding the operation
parameter values contained In @, Li,, Qin and Q.in. TO of the adaptation mechanism
write the dynamics in a form where this linear dependance Theorem 1: Consider the s.ystem in (7) and adaptation

's apparent, let us first build the parameter veétars mechanism given in (9)-(10). For this system and adaptation
0 := col (L(:), Lin(:), Q(:), Qin(:), Qain(:)) (4) mechanism, the state error= a —a and the error on the
linear part of the adapted parameter vedtpr:= 6, — 6y,

0, ]| < b;

c—baflel, o >b. Y

where col stands for column vector, i.e. will remain bounded for alt, and 3k, ks, ks, ks € Ry and
col{wy, z2,...,xn} = [of 2 ... 23]", and L(:) a class\ functior? p where
denotes the column vector formed by stacking all elements
of L on top of each other, i.e. ki :=min {; 1 (12)
: 27 2
L(:) :=col (L11, Lo, ., Lty Lty Lnas - .- L) - kg :=max {3, 5=} (13)
(5) ks ZZmaX{HQH + HQ;mII7 ”Q;inH + ||QinH} (14)
The column vectordi, (), Q(:), Qin(:) and Q.in(:) can be ks :=3b (15)

defined similarly. One can also defire : R x R™ —

.f 1y, .2
R™ x R” to satisfy the expression plw) i=max {e™ ksa® ka f (16)

a= ®(a,v)d (6) such that

where®(a,~) is an x p dimensional matrix with elements
{®(a,v)ij | i =1,...,n, 5 =1,...,p}. Here,®(a,~);;
denotes the element at rainand column; and corresponds
to the contribution of thgth parameter of to theith element

llecol(e, B2 )| < v/kz/k1p(l|col(a, u) o) (17)

ast — oo, for any0 < e < k.

a. The next step is the design of the adaptation mechanism Proof: The proof is given in the Appendix. u
that will modify the system parameters. First, the Galerkin It follows from the theorem that, while it is not possible to
system (6) is written as drive the errore to zero, it is possible to keep it acceptably
small through proper selection of the internal parameters
a = ®(a, )0 andk of the adaptation mechanism. Note also that (10) can
a=®r(a,v)0r + On(a,v)0n be manipulated as

a= LCL + Lm’Y + Q(a7 CL) + Qain (aa ’7) + Qin(’)/a 7) (7)

c;L:I:(A —e)—i—l:in'y—ke
whgre the linear and nonlinear parts of the system have been b= La+ Ly + Lene (18)
split as
®r(a,v)0r := La+ Ly where Lo, = —(L + kI). One can then see that (18)

Dn(a,7)0y = Q(a,a) + Quin(a,7) + Qin(1,7) . (8) is of the same form as (3). Thus, one can now regard
’ ’ ’ ’ the system above as a LPV system that approximates the

We will also assume thaltcol(a,~)|| < ||col(a,7)]|s for  nonlinear Galerkin system (7), with the sigraéntering as
some]|col(a,v) |« € Ry forallt > 0.1 The goal is to obtain an external disturbance. With this interpretation, indte&
a linear model whose parameters will be modified by thdealing with a nonlinear system (i.e. the Galerkin system),
adaptation mechanism to match the Galerkin system abowne can carry out the control design on a linear system (e.g.
For this purpose one can construct a parameter adaptat@mominal linear time invariant (LTI) plant extracted frohet
mechanism in which the underlying model structure is basddPV model) making sure that the controller also performs
on only the linear part of the Galerkin model as follows satisfactorily for the range of parameters predicted by the
. R adaptation mechanism. Figure 1 shows a block diagram
0 = —a®] (a,7)e — aTp(0r) (9) illustrating this idea for a tracking problem, with inputcan
a=®r(a,v)0, — ke = La+ Liny — ke (10) output disturbances also marked, in addition to the adutio
disturbance due to the adaptation error. The approach shown
wheree = a —a, k € Ry, @ € Ry, andb € Ry. The in the figure will be illustrated next with a flow control
function Tp, : R — R™ with b € R is a dead-zone like example governed by Navier-Stokes equations on a square

domain.
1This assumption is justified from a physical perspectivecasriost real-
life processes, the actuators can only produce finite in@utd the system
will not “blow up” under such inputs. 2Continuous, non-decreasing, and non-negative.
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Fig. 1. Using a LPV model approximating the nonlinear Gaferodel

for a reference tracking problem.

IV. EXAMPLE: BOUNDARY CONTROL OF2D
INCOMPRESSIBLENAVIER-STOKES EQUATIONS ON A
SQUARE DOMAIN

A. Problem Description

Consider the two-dimensional non-dimensional Navier

Stokes equation

dq

5+(Q'V)q

subject to the incompressibility conditidvi - ¢ = 0, where

=—-Vp+vAgq

(19)

v = Re~! andRe is theReynolds number. Letp(z, y,t) € R

denote the pressure, anfk,

y,t)

= (u(z,y,1)
R? denote the flow velocity, where andv are the compo-
nents in the longitudinal and latitudinal directions, resp

v(u,x,t)) €

tively. In the given coordinates, equation (19) reads as

ou Ou ou
o Tat T eyt
ov  Ov v
ot "o Tyt T

dp
ox
dp

0

spatial domain is defined &3 =

conditions are

o
—y“(

o
0x?

0%

da?

For our example, the viscosity is set to= 0.1, and the

[0,1] x

conditions areu(z,y,0) = v(z,y,0) = 0 and the boundary

[0,

+

o
0y?

”) (20)

ay?

62

)

1]. The initial

u(z,0,t) =1, v(z,0,t) =0
u(z,1,t) =1, v(z,1,t) =0
o
0 y € [0,0.42);
u(l,y,t ~(t), y€[0.42,0.58];
0, € (0.58,1].
v(l,y,t) =0

and a reference sign@l.s : t — yer(t) is given, then the
goal is to achievey — yyes.

B. Modeling of the Flow Process

It was shown in detail in [9] how a Galerkin system in
the form (2) can be obtained from the Navier-Stokes equa-
tions (20) using proper orthogonal decomposition (POD),
Galerkin Projection (GP) and input separation (IS). In this
paper the results from this study will be used directly witho
repeating the derivations. However for control design, the
system (2) must be augmented with an output equation. For
this purpose an expanded POD expansion for (21) can be
written as

y(t> xcvyca Z ¢z u xc; yc) + ’Y( )wu(xc; yc)

Yy =Louta + Lout,irﬂ’ . (22)

where ¢; are the POD baseline modeg, is the actu-
ation mode,u is the flow in the longitudinal direction,
Loyt = [(z)l,u(mc;yc) ¢2,u(mc;yc) (z)S,u(mc;yc)] € R3 and

Pout,in = wu(mc; yc) cR.

C. Setting up the Adaptation Mechanism to Obtain the LPV
Model

After the reduced order model is obtained, the next step is
to build an adaptation mechanism as described in Section IlI
Recall that while the original Galerkin system (2) is noakn
and contains quadratic terms, for the underlying model in
estimation we wish to utilize only the linear portion of
the model so as to produce a LPV model to be used for
the control design process at the next stage. To reduce the
number parameters in the adaptation process and simplify
the calculations it will be assumed that the Galerkin system
has been transformed into modal form. In this case, it was
shown in [9] that the eigenvalues fdr are of the form
spec(L) = {1, A2, A3} and thereforel. and L;, in modal
form are

A0 O b1
L=|0 X 0 |, Lu=1_|0bb]|. (@3
0 0 )\3 b3

where i, s, A3,bi,b2,b5 € R. Define 0, :=
[)\1 )\2 )\3 b1 bg bd] and

aq 0 0 Y
Pp(a,u):=| 0 az 0 O
0 0 a3 0 0 ~

With these definitions, we set up the parameter adaptation
mechanism (9) and the LPV model (10) whose parameters
are varied by this adaptation mechanism. Recall that the
main goal of the adaptation mechanism is to provide an

wherey € R is the control input. For this example, we shallestimate for the rang® in which the parameters of the
define the control task as controlling the longitudinal sheelL PV system will vary. For this purpose a high number input
at a given point(z.,y.) € Q. In other words, if the system signals of various types we applied to the Galerkin system

outputy is defined as

y(t) = U(IC, Ye, t)

(21)

including ramp functions, sine functions, chirp functipns
square waves and white noise, and the values assumed by
the parameters under these excitation signals were retorde



Observing the range in which the parameter values vary with Step Response
these excitations, the ran@esuch that);, € © is chosen to 16 romrTey
be the 6-dimensional box

Samples
+——+Nominal | |

©={0, €R® : —200.83 < \; < —139.89,
—10.79 < As < —7.19,—40.10 < A3 < —26.73,
—28.90 < by < —2.72,—5.36 < by < —0.73,
—5.24 < by < —1.20} . (24)

Amplitude

Recall also that the adaptation system has two design pa-
rameters,« and k, that determine the rate of convergence
of the scheme and also the bound on the e¢ref a — a.

(cf. Theorem 1). Based also on the various types of inputs
mentioned above, these parameters were choskr=a8000
and « = 100 which were seen to yielde|| < 1073 for all Time sec)
excitation cases mentioned above.

15

Fig. 2. Step response of the closed loop system from refergpg to

: . outputy for ten random values of the parameter vector.
D. Controller Design and Evaluation puty P

Once the range for the parameter vector is known
as in (24), the control design and evaluation is carried Step Response
out in the following steps: 1) Extract a nominal LTI , om e rom e oS
model from the LPV system, 2) Design a controller for
the nominal model using standard LTI design methods
(e.g. LQR, PI, PID, etc.), 3) Assure that controller de-
signed performs satisfactorily over the entire parameter e
range ©. To obtain the LTI nominal plant for the first
step, the parameters are simply fixed at some point near
the center of the parameter ran@e in (24) as follows:

Amplitude

Opn = col{—175,—8.99, —33.4,—15.81, —3.05, —3.22}, N

which yields the nominal LTI plant
él = i/(éLn)d + i/in(éLn)'Y + i’err(éLn)e a5 Samples
Yy = Louta + Lout,infy . (25) -5 e

0 0.5 1 150 0.5 1 150 0.5 1 15
Time (sec)

where the parameter dependencylof L;, and Le,, have
been shown explicitly.For step two, we choose a simple PIFig. 3. Step response of the closed loop system from the atitapterror

controller for the nominal plant in (25) as follows e to outputy for ten random values of the parameter vector.
500
C(s) =5+ — (26)
S

five times. As mentioned in Section IV-C, the adaptation
parameterg and« were chosen so as to limit the the error

st o i vanteaton hat e comeones oy AMPUCE 0] < 10~ hence a fve-ime ampifiatr
P P will yield to an error contribution of at mod.005 at the

satisfactorily for the entire parameter ran@e Figure 2 output, which is acceptable. The parameter raigeovided
shows the closed loop step response of the system frgm

the referencey,.; to outputy for the nominal plant and ten y the adaptation mechanism is also useful in determining
re:

5 the sensitivity to input and output disturbances, entering

random values of the parameter vectyy. It can be seen B )
. . . the system as shown in Figure 1. Figure 4 shows the step
that the closed loop system is successful is tracking the ste .
. ; response and Figure 5 shows the frequency response of the
reference in all cases. Figure 3 shows the closed loop ste

response from the adaptation eren out to outpuy for the cRsed loop system to an input disturbance for the nominal
) lant and ten random values of the parameter vector. The

nominal plant and ten random values of the parameter vector o . .

A : . value of the parameter vector yielding to the highest peak in

01,. Recall that the adaptation errer:= col{ej, es,e3} IS

regarded as a disturbance for the system, as seen in Figuréhf frequency response and |_ts co_rrespondmg step response
fé also shown with dashed lines in the figures. The figures

It can be seen that a step error does not cause inStabiIfr}/dicate that the closed loop system in general has good inpu
and the worst amplification is fromy to y, which is about P Sy 9 g P

disturbance rejection properties, but one needs to beutaref
SRecall thatLoyu; and Lout,in are not parameter dependent. Recall also'f_mpu_t noise of hlgh amp“tUde arountb rad(s IS eXpeC_ted
that the adaptation errar is treated as a disturbance since its attenuation may be slow and may interfere with the

whereI'(s) = C(s)E,(s), I' is the transfer function of the
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Fig. 4. Response of the closed loop system to a step inputrbésice for
ten random values of the parameter vector. Fig. 6. Snapshots (u-component) of CFD simulation for thei&taStokes
system under closed loop with input noise.
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Fig. 5. Frequency response of the closed loop system to wlipturbance
for ten random values of the parameter vector. Fig. 7. Snapshots (v-component) of CFD simulation for theidtaStokes
system under closed loop with input noise.

command signal given from the controller. A similar anadysi .

can be carried out for the case of output disturbance. 0sl |

ref

The next step is to connect the controller in feedback
with the actual Navier-Stokes equations (20) and perform
computational fluid dynamics (CFD) simulations to evaluate
the performance of the closed loop system. For this purpose
Navier2d solver under MATLAB [10] was utilized, with the
reference signal,.s being a step signal dropping frot5
to —0.5 att = 0.7 seconds. In addition, an input noise
of 0.5sin(15¢) was also applied to the system; recall from
Figure 5 thatv = 15 rad/s is the frequency under which the
frequency response peaks for the worst case. The snapshotc
for the CFD simulation for this case are shown in Figures 6-

7 and the system output (21), i.e. thevelocity at the center 0 02 0.4 0.6 0.8 1 12 14

of the domain, is shown in Figure 8. It can be observed that

the closed loop system is successful in tracking the iNpig. 8. Point of interest (i.e. system outpytfor the Navier-Stokes system
reference, while at the same time significantly attenuatingnder closed loop with input noise.

the effect of the input disturbance to the output, which is

Y Vet




consistent with the earlier analysis based on the LPV modelhere k3 := max{||Q| + WQ—;‘“”, W + ||Qinll}, and

approximation. we have used Young's inequality as needet@he first

term —(k — ¢)|le||? is clearly non-positive. The second

term |le|| (—¢||e]| + ks]|col(a, w)||?) will be less than or
In this paper we considered a systematic approach to t@gual to zero if|le| > e 'ks]|col(a, 7)|I*>. To show the

modeling and control design of flow problems, as well afon-positiveness of the third termTT(GL + 0.)0, =

the evaluation of closed loop performance and robustnessgZy, (4, + 6,), one can easily prove that for the dead-

An adaptation scheme was then built to yield a LPV modeLlone functionYs, there existks, k5 € Ry4 such that for

approximating the nonlinear Galerkin model representi®g t |5, || > &, it holds that gTTb(QL +01) > ksl

flow and it was shown that the LPV approximation canrhys, if it is the case thamoLH > k4 then it holds that

be made to represent the nonlinear Galerkin model WIth@T'rb(gL +6) < —ks||6.]> < 0 and hence the third

reasonably small error. This allowed for the treatment Qferm (29) will be less than or equal to zero. Then, for the

the LPV model as the actual flow model, with the erroentire state vectorol(e, 6,), if

vector entering as a disturbance, and the parameter wagati ~ . 0

providing a range of uncertainty in which the control de- [[col(e, O)[| > max{e™ ksl|col(a, V)lI5, ks

sign must perform satisfactorily. The idea was demongirate =: p(|lcol(a, ¥)[loo) := 1 (30)

through a Navier-Stokes flow control example on a squalBan it is clear that

domain, where the control goal was to make the center point

longitudinal velocity track a given reference. V < —(k=e)lell” + llell (—ellell + kal|col(a, u)|?)
Our current and future research directions include utigzi — TbT(éL +0.)0, <0

the parameters from the adaptation scheme in the controller —(k—e)e|?— k ||§ 2

design (e.g. scheduling techniques), obtaining LPV model " SIIPL N

approximations for different reduced order models and test ks |[col(e, 01 )||? := —W3(col(e,01)) <

ing current and new approaches on other flow control casghere ks := min{k — ¢, ks} > 0. Thus using (27), (28)

V. CONCLUSIONS ANDFUTURE WORKS

<
<

studies. and (30), it can be seen that for— co we have
APPENDIX Wi ((COI(@,@L)) < max Wo (COl(@,éL))
PROOF OFTHEOREM 1 } llcol(e,0L)I<p
To analyze the stability and boundedness of (8)-(10) we [[col(e, 01 )[| <+/k2/k1p(||col(a, V)ll)
first define a Lyapunov-like function which is the statement of the theorem.
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